Der "empirische Wahrscheinlichkeitsbegriff" – gut gemeint, aber auch wirklich gut?

HANS HUMENBERGER, WIEN

Zusammenfassung: Dieser kurze Beitrag soll ein Plädoyer dafür sein, den Begriff "empirische Wahrscheinlichkeit" nicht zu verwenden, denn er verwischt m. E. den grundlegenden Unterschied von Wahrscheinlichkeiten und relativen Häufigkeiten.

Es gibt verschiedene Wahrscheinlichkeitsbegriffe, das ist allgemein bekannt und wohl nichts Neues. Aber leider ist ihr Verständnis (manchmal selbst bei gleichem Begriff) nicht einheitlich, z. B. beim Begriff frequentistische Wahrscheinlichkeit.

Man kann bei der Unterteilung der verschiedenen Wahrscheinlichkeitsbegriffe in den Vordergrund stellen, wie man Wahrscheinlichkeiten **interpretieren** kann, sozusagen was sie **bedeuten**.

In diesem Sinn bedeutet frequentistische Wahrscheinlichkeit, dass man damit Vorhersagen für relative Häufigkeiten machen kann (auch ohne das zugehörige Zufallsexperiment durchzuführen). Man hat einen theoretischen Wert (P(A)), sozusagen ein "geistiges" Modell, mit dem man Prognosen für die empirische Welt machen kann (relative Häufigkeiten $h_n(A)$):

 $P(A) \xrightarrow{\text{vorhersagen}} h_n(A)$. Das hat natürlich nur dann einen Sinn, wenn es sich um Ereignisse handelt, die in Zusammenhang mit (beliebig wiederholbaren!) *Zufallsexperimenten* stehen.

In diesem Sinn wäre der *subjektivistische* ein anderer Wahrscheinlichkeitsbegriff. Aber *Laplace*- und *geometrische Wahrscheinlichkeiten* nicht (diese können ja auch einerseits frequentistisch und andererseits subjektivistisch interpretiert werden).

Eine andere Einteilung verschiedener Wahrscheinlichkeitsbegriffe stellt nicht die verschiedenen Interpretationsmöglichkeiten in den Fokus, sondern: Wie kann man zugehörige Werte **erhalten**? Diese verschiedenen Versionen von Wahrscheinlichkeitsbegriffen sind in Schulbüchern und Lehrplänen (zumindest in Österreich) verankert.

In diesem Sinn bedeutet *frequentistische Wahrscheinlichkeit*: Man kann solche (Näherungs-) Werte erhalten, indem man eine lange Versuchsserie durchführt, und diese Zahl dann als Schätzwert nimmt: $h_n(A) \xrightarrow{\text{schätzen}} P(A)$

So gesehen wäre neben dem *frequentistischen* und dem *subjektivistischen* Wahrscheinlichkeitsbegriff

auch Wahrscheinlichkeit als relativer Anteil (Laplace-Wahrscheinlichkeit, geometrische Wahrscheinlichkeit; eventuell sogar getrennt?) ein eigener Wahrscheinlichkeitsbegriff (d. h. eine Methode, wie man auf solche Werte kommen, sie erhalten kann).

Dagegen ist auch nichts einzuwenden, denn für Lernende stellt sich in erster Linie die Frage nach "wie kann ich zugehörige Werte erhalten?". Die Frage nach "wie kann ich Werte interpretieren?", ist vielleicht bei der Erstbegegnung mit dem Wahrscheinlichkeitsbegriff etwas weniger wichtig, unbehandelt sollte sie im Schulunterricht aber auch nicht bleiben.

Es geht in dieser kurzen Note vor allem um Formulierungen, die in diesem Zusammenhang (gut gemeint) manchmal gebraucht werden, und diese sind problematisch, also im Klartext nicht mehr gut!

Unmittelbarer Anlass für diese Zeilen war ein Vortrag, in dem der Begriff empirische Wahrscheinlichkeit als Alternative zu frequentistische Wahrscheinlichkeit erwähnt wurde. Das war für mich aber ganz neu, das hatte ich noch nie gehört bzw. gelesen. Sucht man in Google den Begriff "empirische Wahrscheinlichkeit" (mit den Anführungszeichen, so dass wirklich diese beiden Worte als zusammengehöriger Begriff gesucht werden), dann erhält man immerhin ca. 43.900 Ergebnisse¹. Wenn man es mit "empirischer Wahrscheinlichkeitsbegriff" versucht, erhält man nur mehr 8 Treffer (beides 29. März 2019). Einer dieser 8 Treffer führt auf Tietze/Klika/Wolpers (Hrsg., 2002, S. 109), sie beziehen sich auf Engel 1999 im Rahmen einer Tabelle, in der "empirischer Wahrscheinlichkeitsbegriff" vorkommt. Weder bei Tietze/Klika/ Wolpers 2002 noch bei Engel 1999 wird auf diesen Begriff besonderer Wert gelegt², er wird nur beiläufig erwähnt, wie im oben erwähnten Vortrag. Er kommt aber in älteren und in neueren Lehrbüchern teilweise sogar als Kapitelüberschrift vor (Schmetterer 1966, S. 23 ff; Bortz/Lienert/Boehnke 2008, S. 3; Bortz/Lienert 2008, S. 5).

Ich halte diese Wortwahl (empirische Wahrscheinlichkeit, empirischer Wahrscheinlichkeitsbegriff) jedoch für ungeeignet und wenig hilfreich, weil sie genau den Unterschied verwischt, den ich oben versucht habe herauszustreichen (Wahrscheinlichkeiten sind theoretische Werte bzw. Modellwerte, relative Häufigkeiten sind empirische Werte). Und ich hal-

te diesen Unterschied besonders im Lernprozess für wichtig, denn man kann ja im Schulunterricht nicht gut mit den Kolmogoroff-Axiomen³ arbeiten, um formal Wahrscheinlichkeiten zu definieren. Man kann im Lernprozess – zur Etablierung geeigneter Grundvorstellungen – plakative Gegenüberstellungen wie "relative Häufigkeiten sind empirische Werte" und "Wahrscheinlichkeiten sind theoretische Werte, sie haben Modellcharakter" sinnvoll einsetzen, um den Zusammenhang zwischen relativen Häufigkeiten und Wahrscheinlichkeiten adäquat zu beschreiben. Es sollte im Unterricht gelingen, im Rahmen des frequentistischen Wahrscheinlichkeitsbegriffs Folgendes herauszuarbeiten (beide oben erwähnten Richtungen: vorhersagen, schätzen; vgl. Borovcnik 1992):

Wahrscheinlichkeiten sind **Prognosen** für zu erwartende relative Häufigkeiten bei wiederholten Zufallsexperimenten.

Wahrscheinlichkeiten können durch relative Häufigkeiten (großes *n*) **geschätzt** werden.

Man kann im Schulunterricht meist gar nicht genau definieren⁴, was Wahrscheinlichkeiten eigentlich *sind*, trotzdem müssen es Lehrende schaffen, bei den Lernenden zugehörige Grundvorstellungen zu etablieren, was man sich unter Wahrscheinlichkeiten vorstellen kann, was sie leisten, wie man sie erhalten und wie man mit ihnen rechnen kann, ein bekanntlich schwieriges Unterfangen.

Die eben formulierten zwei Richtungen des frequentistischen Wahrscheinlichkeitsbegriffes sollten keine Überforderung für Lernende darstellen. Der Begriff empirische Wahrscheinlichkeit soll wohl genau die eine Richtung des frequentistischen Begriffes hervorheben ("gut gemeint"): Man kann Wahrscheinlichkeitswerte auch aus der Empirie erhalten; man kann aber erstens immer nur Schätzwerte erhalten, und zweitens sollte man den so erhaltenen Wahrscheinlichkeitsbegriff nicht mit dem Adjektiv empirisch bezeichnen, weil dann der Unterschied zu relativen Häufigkeiten zu sehr verwischt wird: Wie sollen dann die Lernenden den Unterschied zwischen Wahrscheinlichkeiten und relativen Häufigkeiten noch benennen?

Ein Analogon: Wenn man z. B. empirische Werte benutzt, um eine Regressionsfunktion aufzustellen, die ihrerseits natürlich auch nur Modellcharakter hat, wird man auch kaum sagen, dass die erhaltene Regressionsfunktion rein empirischen Charakter hat.

Ein Blick in österreichische Dokumente für den Schulunterricht lässt bzw. ließ ein ähnliches Problem erkennen. Dort wurde zwar nicht der Begriff empirische Wahrscheinlichkeit verwendet, aber die Stoßrichtung bzw. das zugrundeliegende Problem war gleich: gut (vereinfachend!) gemeint, aber auch wirklich gut? Ich würde sagen, nein!

So hieß es im österreichischen Lehrplan für das Gymnasium (Klasse 10, gültig bis 2017) im Bereich der Stochastik: "Kennen der Problematik des Wahrscheinlichkeitsbegriffs; Auffassen von Wahrscheinlichkeiten als relative Anteile, als relative Häufigkeiten und als subjektives Vertrauen".

Hier ist problematisch: "Wahrscheinlichkeiten **als** relative Häufigkeiten". Das suggeriert doch irgendwie, dass Wahrscheinlichkeiten und relative Häufigkeiten eigentlich dasselbe sind. Auch wenn man ahnen kann, wie das gemeint ist, da wird ein falsches Bild vermittelt, und das wäre leicht vermeidbar. Z. B. durch eine Formulierung wie:

"Kennen des Zusammenhanges zwischen Wahrscheinlichkeiten und relativen Häufigkeiten", oder wenn es spezifischer sein soll, noch mit dem Zusatz: "Wahrscheinlichkeiten als Prognosen für relative Häufigkeiten, und relative Häufigkeiten als Schätzwerte für Wahrscheinlichkeiten".

Im neuen ("semestrierten"; gültig je nach Schulen frühestens ab 2017/18) Lehrplan heißt es dazu: "Methoden zur Ermittlung von Wahrscheinlichkeiten kennen: Bestimmung eines relativen Anteils, Ermittlung einer relativen Häufigkeit durch eine Versuchsserie, Angabe des subjektiven Vertrauens; wissen, dass diese Methoden nur näherungsweise bzw. unsichere Ergebnisse liefern".

Hier ist also nicht mehr die Rede von "Wahrscheinlichkeiten als relative Häufigkeiten"⁵. Aber deutlich wichtiger scheint offenbar jene Richtung der frequentistischen Sichtweise zu sein, dass man Wahrscheinlichkeiten näherungsweise durch lange Versuchsserien erhalten kann. Die andere Richtung, dass Wahrscheinlichkeiten Prognosewerte für relative Häufigkeiten bei wiederholten Zufallsexperimenten sind (eine mögliche *Interpretation*), wird leider gar nicht erwähnt.

Jene Richtung des frequentistischen Wahrscheinlichkeitsbegriffes, für die offenbar auch der Begriff *empirische Wahrscheinlichkeit* Verwendung findet, wird manchmal auch als *statistische Wahrscheinlichkeit* bezeichnet (Büchter/Henn 2007, S. 179). Das ist schon weniger verwirrend, aber vielleicht braucht man beim frequentistischen Wahrscheinlichkeitsbegriff gar keinen zweiten "Konkurrenznamen" zu nennen, am besten versteht man darunter immer gleich beide Richtungen:

$$h_n(A) \xrightarrow{\text{schätzen}} P(A)$$

Und wenn man das erklärungsbedürftige Fremdwort frequentistisch vermeiden will, kann man sich dafür sicher was Geeignetes überlegen, aber im Wort empirisch sehe ich da keine Lösung, im Gegenteil, eher eine Belastung für angemessene Vorstellungen.

In analoger Beziehung stehen auch noch andere Begriffspaare, auch hier kann man sagen, dass es sich jeweils um einen empirischen und um einen theoretischen Wert handelt:

- Mittelwert \overline{x} einer Datenliste $\xrightarrow{\text{schätzen}}$ Erwartungswert μ der zugehörigen Verteilung
- (empirische) Varianz s^2 einer Datenliste $\xrightarrow{\text{schätzen}}$ Varianz σ^2 der zugehörigen Verteilung

Hier kommt noch das Problem mit dem Nenner n-1statt n bei s^2 dazu. Ein Spezifikum dieses Begriffspaares ist: Für beide wird derselbe Name verwendet (Varianz; anders als bei den anderen beiden Begriffspaaren relative Häufigkeit – Wahrscheinlichkeit, Mittelwert – Erwartungswert), aber immerhin verschiedene Buchstaben (s^2, σ^2) , und bei der Varianz einer Datenliste wird oft dazugesagt "empirisch", also "empirische Varianz" (weil sie sich eben auf empirische Daten bezieht). Das soll aber nicht dazu dienen, den Begriff empirische Wahrscheinlichkeit im obigen Sinn zu rechtfertigen, denn das Pendant zur empirischen Varianz (bei Nenner n) übertragen auf den Wahrscheinlichkeitsbegriff wäre ja mit empirischer Wahrscheinlichkeit begrifflich wirklich die relative Häufigkeit zu meinen, und das kann ja wohl nicht sein.

In manchen der mit Google gefundenen Stellen zu empirische Wahrscheinlichkeit (manchmal auch experimentelle Wahrscheinlichkeit), liest man dann auch von theoretischen Wahrscheinlichkeiten (gemeint: mit Laplace-Annahmen – Symmetrie – bestimmt). Es ist klar, wie das gemeint ist ("gut" – als Lernhilfe), aber ist es auch wirklich gut im Sinne einer tragfähigen Begriffsbildung? Was sollen Lernende, die von diesen Begriffen geprägt wurden, antworten auf die Frage: Was ist der Unterschied zwischen relativen Häufigkeiten und Wahrscheinlichkeiten?

Eine deutlich weiter reichende Analyse auch noch anderer Wahrscheinlichkeitsbegriffe findet sich in Krüger u. a. 2015, S. 233 ff. Die zugehörige Quintessenz: In der Schule soll ganz auf weitere Adjektive bei "Wahrscheinlichkeit" verzichtet werden.

Anmerkungen

1 Auch diese hohe Zahl war ein Grund, diese kurze Note zu verfassen. Es ist auch sehr erstaunlich, dass sich

- diese Zahl innerhalb kurzer Zeit drastisch erhöhte: Im Februar 2019, als ich zum ersten Mal mit Google nach "empirische Wahrscheinlichkeit" suchte, waren es nur ca. 4500 Treffer.
- 2 Ich weiß durch persönliche Email-Kommunikation, dass sich auch J. Engel heutzutage von diesem Begriff distanziert und ihn für unpassend hält.
- 3 Man kann und soll zwar im Schulunterricht durchaus erarbeiten, dass mit Wahrscheinlichkeiten in einer gewissen Weise "die (relative) Größe von Teilmengen" gemessen, d. h. der Frage nachgegangen wird: Wie groß ist eine Teilmenge im Verhältnis zu einer Gesamtmenge Ω ("Maßtheorie"). Da ist man ja schon nahe bei Kolmogoroff, und die zugehörigen Axiome wirken ja "natürlich", weil relative Häufigkeiten die in den Axiomen ausgedrückten Eigenschaften in natürlicher Weise haben. Dass aber diese Sichtweise reicht, um den Wahrscheinlichkeitsbegriff zu *definieren*, ist den Lernenden natürlich nicht klar, dafür ist ihr Abstraktionsvermögen i. A. nicht hinreichend ausgeprägt.
- 4 Bei anderen mathematischen Begriffen ist das meist anders, sie werden i. A. im Schulunterricht definiert: Rechteck, Bruchzahl, Polynomfunktion, Ableitung, etc. Aber diese Begriffe werden nicht axiomatisch definiert.
- 5 Unklar bleibt, ob und warum sich der letzte Satz ("unsichere Ergebnisse") auf alle drei genannten Methoden zur Ermittlung von Wahrscheinlichkeiten bezieht.

Literatur

Borovcnik, M. (1992): Stochastik im Wechselspiel zwischen Intuitionen und Mathematik. BI, Mannheim.

Bortz, J., Lienert, G. A. (2008): Kurzgefasste Statistik für die klinische Forschung. Leitfaden für die verteilungsfreie Analyse kleiner Stichproben. Springer, Berlin-Heidelberg.

Bortz, J., Lienert, G. A., Boehnke, K. (2008): Verteilungsfreie Methoden in der Biostatistik. Springer, Berlin-Heidelberg.

Büchter, A., Henn, H.-W. (2007): Elementare Stochastik (2. Auflage). Springer, Berlin-Heidelberg.

Engel, J. (1999): Stochastische Modellierung funktionaler Abhängigkeiten. Habilitationsschrift, Stuttgart.

Krüger, K., Sill, H.-D., Sikora, C. (2015): Didaktik der Stochastik in der Sekundarstufe I. Springer, Berlin-Heidelberg.

Schmetterer, L. (1966): Einführung in die mathematische Statistik. Springer-Verlag, Wien.

Tietze, U.-P., Klika, M., Wolpers, H. (Hrsg., 2002): Mathematikunterricht in der Sekundarstufe II, Band 3.

Anschrift des Verfassers

Hans Humenberger Fakultät für Mathematik, Universität Wien Oskar-Morgenstern-Platz 1, A-1090 Wien hans.humenberger@univie.ac.at